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Resumo 

Castello Branco, Rodrigo Luís Formosinho. Kassar, Bruno de Barros 
Mendes. Nieckele, Angela Ourivio. Avaliação de métodos de captura de 
interface para a predição numérica da ascensão de bolhas de gás em 
meios viscosos. Rio de Janeiro, 2019. 70p. Projeto de Graduação - 
Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do 
Rio de Janeiro. 

Com o passar dos anos, o método Volume of Fluid original passou por 

diversas modificações de forma a melhorar suas capacidades de prever o 

comportamento de escoamentos multifásicos. O presente trabalho propõe o 

acoplamento de um método de cálculo de curvaturas baseado em nuvens de pontos 

(PC-VOF) com um método de advecção geométrico baseado no conceito de iso-

superfícies (isoAdvector). Um método variante do isoAdvector, que resolve uma 

Reconstructed Distance Fucntion (isoRDF) também foi contemplado no presente 

trabalho, e um acoplamento do mesmo com o PC-VOF foi realizado. Os métodos 

foram implementados em OpenFOAM e seus desempenhos foram avaliados com 

casos de benchmark. Simulações de configurações com soluções analíticas foram 

realizadas como testes de validação. Subsequentemente, dois casos de benchmark 

2D que envolvem a ascensão de bolhas de gás em meios viscosos foram testados.  

Um dos casos constitui um escoamento dominado por tensões superficiais e o outro 

é dominado por forças inerciais. Malhas de quadriláteros e triângulos foram 

utilizadas, e testes de convergência de malha foram realizados. Os métodos foram 

testados e comparados através do acompanhamento da variação temporal de 

diversas grandezas do escoamento. Os casos de benchmark destacaram a 

importância da precisão no cálculo de curvatura nos escoamentos dominados por 

tensões superficiais, uma vez que o PC-VOF original e os métodos acoplados 

obtiveram as soluções mais precisas para esta configuração. Os casos também 

demonstraram a importância de um método de advecção preciso, particularmente 

na configuração dominada por forças inerciais, em que o isoAdvector e isoRDF 

obtiveram boas soluções. Para a maioria dos casos contemplados, os métodos 

acoplados apresentaram as soluções mais precisas, e são recomendados como 

uma alternativa estável e precisa para os métodos que os compõem. 

Palavras-chave: 

VOF; Bolha de gás em ascensão; Algoritmo de captura de interface; OpenFoam 



Abstract 

Castello Branco, Rodrigo Luís Formosinho. Kassar, Bruno de Barros 
Mendes. Nieckele, Angela Ourivio. Evaluation of Interface Capturing 
Algorithms for the Prediction of Gas Bubble Ascension in Viscous 
Media. Rio de Janeiro, 2019. 70p. Projeto de Graduação - Departamento 
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de 
Janeiro. 

Throughout the years, the standard Volume of Fluid method has undergone 

several modifications in order to enhance its capabilities in predicting the behavior 

of multiphase flow. The present work proposes the coupling of a point-cloud 

curvature computation method (PC-VOF) with a geometric advection scheme 

based on the concept of isosurfaces (isoAdvector). An isoAdvector variant 

method that resolves a Reconstructed Distance Function, called isoRDF, is also 

contemplated. A coupling of the latter with PC-VOF is performed. The methods 

were implemented in OpenFOAM, and their performances were evaluated with 

benchmark cases. Simulations of configurations with analytical solutions were 

carried out as validation tests. Subsequently two 2D benchmark cases which 

involve the ascension of gas bubbles in viscous media were tested. One case 

being driven by surface tension forces and the other by inertial forces. Both 

quadrilateral and triangular meshes were used, and grid convergence tests were 

carried out. The coupled methods, as well as their original constituents were 

tested and compared by tracking the time variation of a set of flow quantities. The 

benchmark cases highlighted the importance of curvature computation in surface 

tension driven flows, as the original PC-VOF and the coupled solvers presented 

the most accurate solutions for such configuration. They have also shown the 

importance of an accurate advection algorithm, particularly in the inertial forces 

driven flows, in which the isoAdvector and isoRDF yielded good solutions. For 

the majority of the contemplated cases, the coupled methods presented the most 

accurate solutions, and they are recommended as a stable and accurate 

alternative for its original constituents. 

Key-words: 

VOF; Gas Bubble Ascension; Interface Capturing Algorithms; OpenFOAM. 
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1. Introduction 

Multiphase flows are of great importance in various areas of the industry 

and are characterized by the presence of multiple fluids or phases, separated by 

interfaces, through which the flow properties are discontinuous. They are found 

in refrigeration, pipeline transport of oil & gas, nuclear reactors with pressurized 

water, etc. 

The main challenge in predicting multiphase flows is the control and tracking 

of the phases in the domain, which may be distributed in different patterns. In 

pipe flows, these patterns can be distributed in different flow configurations 

depending in the phase´s flow rates, properties, and pipeline geometric 

configuration. As shown in Fig. 1.1, these arrangements can be annular, 

stratified, slug, churn, bubbly and dispersed. The exchange rate of mass, 

momentum and energy are affected by the interfacial geometric distribution of the 

flow components and the interfacial shape (Brennen 2003).  

 

Figure 1.1 -  Flow patterns for horizontal and vertical pipes (Brennen, 2003). 

  Bubble growth and detachment occur in various applications, such as heat 

exchangers, oil transport and flotation processes (Albadawi et al. 2013). Slug flow 

consists of a liquid phase occupying the pipe’s cross-section almost entirely, 

flowing intermittently and separated by gas bubbles, called Taylor bubbles. The 

occurrence of slug flow in pipelines is often times undesirable, given the pressure 

jumps along the domain due to its intermittent nature. Different flow patterns are 

quite frequent in the industry, where transition from one pattern to another often 
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occurs along pipelines. The study of bubble dynamics in general or Taylor 

bubbles in particular has become essential for adequate pipe design. 

Validation tests involving bubble dynamics are common in numerical 

method testing, due to their simple configuration. They also allow complex 

topological changes, e.g. breakup and coalescence, which present challenges 

for the capturing techniques (Hysing et al. 2009). 

For phenomena in which the fluid interface is submitted to complex changes 

over time, a sophisticated numerical methodology is required. There is a wide 

variety of methods available in the literature that are divided into two categories: 

time and phase average based method, and direct interface tracking methods. A 

widely used method in the first category is the Two Fluid model, in which the 

mass, momentum and energy conservation equations are solved for each of the 

phases. The coupling between the phases is modelled by the interfacial terms, 

aided by empirical correlations. Since it requires a higher number of equations to 

be solved, the computational effort is usually higher in comparison to other 

models.  

The second category, referred to as the one fluid model, solves one set of 

conservation equations for the entire domain, and an additional treatment is 

performed to keep track of the fluid interface. This is done by either solving an 

additional transport equation for a phase indicator, or by using marker particles 

to determine the interfacial points over a fixed grid (Cano-Lozano et al. 2015). 

The phase coupling is done by an appropriate surface tension force modelling. 

Within the one fluid model, the phase indication can be done by several 

classes of techniques, such as Front Tracking (FT) (Univerdi & Tryggvason, 

1992), Level-Set (LS) (Osher & Sethian, 1998), Marker and Cell (MAC) (Harlow 

& Welch, 1965) and Volume of Fluid (VOF) (Hirt & Nichols, 1981), (Prosperetti & 

Tryggvason 2007), (Brennen 2003). 

The Front Tracking technique (Fig. 2a) employs a fixed mesh-grid for the 

flow field solution and a secondary moving grid of massless particles connected 

over the surface to keep track of the interface, which remains sharp throughout 

the domain. Its main drawbacks are associated with high interface deformations 

and topological changes. The Marker and Cell method (Fig. 2c) places marker 

particles in the portion of the computational domain that contains fluid, 

highlighting the free surface. In a similar manner to the Front Tracking method, 
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the particles are displaced in a Lagrangian way based on the velocity field of the 

fixed grid.  

The Level-Set (LS) method (Fig. 2b) uses a signed distance function to 

identify the different flow phases. The distance function takes negative values in 

regions occupied by one of the fluids, and positive values in regions occupied by 

the other. The interface resides in the points at which the distance function is 

zero. The LS function ceases to act as a distance function after the first time step 

advection and, thus, requires re-initialization to regain its distancing properties 

(Albadawi et al. 2013). One of the drawbacks of this method is that it does not 

conserve mass.  

Lastly, the VOF method (Fig. 2d) treats the interface using a scalar function 

𝛼 in the entire domain. This function represents the volume fraction of a particular 

phase chosen as a reference in each computational cell. The 𝛼 function has a 

value of 1 in the reference phase, and 0 in the other. In cells containing the 

interface, 𝛼 varies between 0 and 1. In regions where both phases are present, 

the phase properties are determined as properties of a mixture. The great 

attractive quality of this method for transport phenomena studies is that it 

guarantees mass conservation.  

 

Figure 1.2 – Common interface classes (Cano-Lozano et al. 2015). 

(a) Front Tracking; (b) Level Set; (c) Marker and Cell; (d) VOF. 

One of the most challenging aspects of the VOF method is the evaluation 

of the phase transport equation. The interface can be either represented 

geometrically, by lines or planes, or algebraically, by functions or polynomials. 

The operation in geometric VOF is usually divided into two steps, an interface 

reconstruction and a field advection step. In algebraic VOF the transport equation 

is numerically approximated for 𝛼, and the volumetric fluxes are computed 

algebraically, therefore it does not require an interface reconstruction. 
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The main issue is that the use of low order schemes to discretize the 

transport equation leads to inaccurate solutions due to false diffusion, which gives 

rise to interface smearing, and high order schemes are often unstable and cause 

unphysical oscillations. 

In order to address these issues, several methods have been developed 

over the years, particularly on the interface reconstruction step. Algorithms such 

as the Simple Line Interface Calculation (SLIC) (Noh & Woodward, 1976), 

Piecewise Linear Interface Calculation (PLIC) (Debar, 1974), Compressive 

Interface Capturing (Ubbink, 1997) and the Donor-Acceptor method (Hirt & 

Nichols, 1981) have been developed, some of which will be discussed in the 

following section. 

1.1. Literature Review 

The following section presents a brief discussion of the main challenges and 

improvements in the development of fluid interface treatment, and the role of 

studying ascending bubble dynamics in this particular field. 

Fluid interface dynamics is of great importance to the industry and requires 

a careful treatment, which demands fast and robust solution methods. The VOF 

is one of the most widely used methods to solve fluid interfaces. However, as 

previously discussed, combining it with low order discretization schemes may 

result in smeared interfaces, and higher order schemes may generate numerical 

oscillations. The latter occurs because the VOF method is imprecise in the 

surface normal and curvature computation from direct differentiation of the 

volume fraction field, since it undergoes abrupt changes near the interface. 

It is common to compute the surface tension in VOF by the Continuous 

Surface Force (CSF) method (Brackbill et al. 1992), in which the surface tension 

force can be written as �⃗�𝑆𝑇 =  𝜎𝜅𝛿𝑠n̂ . Where 𝜎 is the surface tension, 𝜅 is the 

curvature, 𝛿𝑠 is the Dirac delta, and n̂ is the unit normal vector. The computation 

of 𝜅 and n̂ are crucial to an appropriate surface tension modelling. The 

inaccuracies in curvature computation are known to create parasitic currents and 

often generate unphysical pressure fields, with ripples in the interface region 

(Klostermann et al. 2013; Kassar, 2016).  
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Parasitic or spurious currents are some of the main drawbacks of the 

existing VOF based solvers. They can be detrimental in practical two-phase 

flows, leading to artificial generation of kinetic energy and heat transfer (Hardt & 

Wondra 2008). Besides, they can turn the solver unfeasible for surface tension 

driven flows. Mirjalili et al. (2017) points out that a test case assessing the relative 

magnitude of these currents is an essential benchmark for surface tension 

implementation methods.  

Several works present modifications to the VOF framework in order to 

mitigate some of its main issues. Within the geometric approach, Noh & 

Woodward (1976) introduced one of the earliest interface reconstruction methods 

for a 2D domain, named Simple Line Interface Calculation (SLIC), in which the 

interface is approximated by straight lines in the 𝑥 and 𝑦 directions, where the 

line parallel to the 𝑥 axis is used for the 𝑦 direction advection, and vice e versa. 

Hirt & Nichols (1981) proposed a modification to the SLIC method, where instead 

of two straight lines parallel to each axis, a single line parallel to one of the axis 

is used for the advection in both directions. In order to select which line to use, 

the normal vector to the interface is determined, and the direction to which it is 

most closely aligned would be the one used. 

Rider & Kothe (1998) proposed a Piecewise Linear Interface Calculation 

(PLIC) method as an improvement to the Hirt & Nichols algorithm, where the 

interface normals are determined, and the straight lines would be perpendicular 

to these normal vectors. In 3D, the straight lines would be naturally substituted 

by planes. Its algorithm consists of two steps: the aforementioned interface 

reconstruction using the interface normals as reference, and a geometrical 

computation of the volume fluxes across the cell faces (Rider & Kothe, 1998; 

Kassar, 2016). Figure 1.3 shows a comparison of the previously mentioned 

reconstruction methods.  

The PLIC algorithm is still widely used in numerical solvers for multiphase 

flows, such as in Cummins et al. (2005) and Francois et al. (2006). It has also 

seen some improvements in recent years. Lopez et al. (2005) present an 

improvement to the PLIC scheme for fluid structures thinner than the cell size, by 

placing markers in the mid-points of every reconstructed cell in order to better 

track the interface segments of filaments. Mencinger & Zun (2011) present a PLIC 

based advection algorithm for moving grids and Ito et al. (2013) developed a PLIC 
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algorithm for unstructured meshes. 

 

Fig 1.3 – Reconstruction methods comparison (Prosperetti & Tryggavason, 2007) 

(a) The actual interface shape; (b) SLIC method; (c) Hit & Nichols; (d) PLIC. 

What usually varies in the available PLIC algorithms is the interface normal 

computation method. Youngs (1982) has proposed an estimate to n̂ as the 

normalized gradient of the volume fraction in a computational cell. This method 

performs better in low resolution meshes, but it is unreliable for finer grids. Aulisa 

et al. (2007) developed a combined method between Youngs’s and a column 

centered method, called mixed Youngs-Centered method (MYC), which mitigates 

the issue of decreased performance at higher resolution meshes. Pilliod & 

Puckett (2004) propose the efficient Least-squares volume-of-fluid Interface 

Reconstruction Algorithm (ELVIRA) that uses a least-squares error minimization 

to select an optimal normal vector.  

The most common approach to obtain the interface curvature is to compute 

the normal vectors by spatially differentiating a smooth field, and subsequently 

taking the divergence of the normal vector field (Mirjalili et al. 2017), though it is 

quite difficult to obtain a smooth 𝛼 field with sharp interface approaches. The main 

dilemma surrounding interface reconstruction is that a sharp approach will 

provide well defined interfaces, resulting in accurate calculations for the volume 

fluxes through the cell faces in the advection step; however, it will also narrow 

the interface thickness, creating rough variations of the 𝛼 field across the 
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interface. The latter harms the normal and curvature computation performed by 

simple field differentiation. 

A viable alternative to direct differentiation of the 𝛼 field is a combination 

of the Level Set with the VOF method. Sussman & Pucket (2000) developed 

a hybrid LS and VOF method, CLSVOF, to solve two phase incompressible 

axisymmetric flows in 3D, aiming to model jetting apparatuses in microscale. The 

interface normals and curvatures are obtained from the LS’s distance function, 

which yields superior results since the phase indicator field from the Level Set 

method is smoother than the VOF’s 𝛼 field.  

Skarysz et al. (2018) presented an iterative PLIC based reconstruction 

method embedded in CLSVOF. Prior to the reconstruction step, the cells are 

divided into tetrahedra, and the volume of the truncated polyhedron can be more 

rapidly calculated than with the use of clipping and capping tools. It also takes 

advantage of the relationship between the volume fractions and interface position 

within a cell in its root finding algorithm. 

Yang et al. (2006) presented a coupled method, called Adaptive Coupled 

Level-Set/Volume-of-Fluid (ACSLVOF), for unstructured triangular meshes. In 

this approach, the Level Set advection equation is solved with a discontinuous 

Galerkin method in Finite Elements. 

Sussman (2003) developed a hybrid LS-VOF method, and instead of 

computing the curvature from the signed distance function field, a reconstruction 

of a Height Function directly from the volume fraction was employed. That 

enabled second order accurate solutions. Essentially, for a given cell, the HF 

method computes the so called heights by summing the volume fraction field at 

the neighbor cells. The resulting height values are differentiable and by employing 

a second-order finite difference scheme, one can obtain the curvature values. 

The standard Height Function method uses a fixed 7 x 3 stencil – 7 cells and 3 

height columns – for the summation process. 

Popinet (2003) developed a multiphase solver, named Gerris Flow Solver, 

that combines Adaptive Mesh Refinement (AMR) with spatial discretization in 

quadtree/octree for incompressible flows. Using Gerris, Popinet (2009) 

generalized the HF method, allowing second order precision on lower resolution 

meshes. The generalized HF method uses an adaptive stencil for the height 



1. Introduction ______________________________________________________ 17 
 

 
 

summation.  

In particular, the use of AMR has shown significant improvement to VOF 

based solvers. That is due to the fact that VOF is sensitive to mesh resolution, 

which can be an error source for the reconstruction and advection algorithms. 

Low mesh refinement may cause numerical coalescence of the dispersed phase, 

which prevents a realistic definition of the interface when the interface separation 

is smaller than the size of the computational cell (Cano-Lozano et al. 2015). By 

concentrating mesh refinement in regions with larger gradients or abrupt changes 

of flow quantities, one can achieve better results with a lower computational cost. 

The Convolution method (Francois et al. 2006) tackles the issue of direct 

differentiation of the volume fraction field by using a smooth kernel to convolute 

the 𝛼 field. The normals and curvatures are obtained from the smooth resulting 

field. 

Patel et al. (2017) presented a 3D hybrid method for curvature computation 

combining the generalized HF with the Convolution method, obtaining high 

accuracy at high grid resolutions and second-order convergence. Their method 

was validated with test cases involving stationary and oscillating droplets as well 

as bubble ascension in liquid columns. 

Height Functions are indeed attractive in terms of accuracy, convergence 

and momentum conservation properties, however, their performance is weaker 

in lower resolution meshes, specifically where 𝜅Δ𝑥 > 1/5 (Popinet, 2018). This 

drawback in HF algorithms is ground for developing alternative interface 

reconstruction methods. 

Renardy & Renardy (2002) proposed a surface tension parabolic 

reconstruction algorithm (PROST). In their work, it has been observed that the 

use of VOF generates spurious currents in the vicinity of the interface, and they 

persist in spite of mesh refinement. The PROST algorithm has overcome this 

problem by representing the interface by quadratic equations in the 

computational cells, and an optimal fit is performed in order to calculate the 

interface curvature value. Evrard et al. (2017) further expanded this method to 

unstructured meshes. 

Several validation test cases for interface treatment methods involve the 

study of bubble behavior, particularly in recent works. 

Hysing et al. (2009) proposed validation test cases for two phase flows 
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involving the problem of a two dimensional rising bubble in two different 

configurations. In their work, it is pointed out that the literature lacks quantitative 

data to evaluate novel numerical methods. The benchmark is composed of 

solutions obtained by three independent software codes: TP2D, FreeLIFE and 

MooNMD. 

Klostermann et al. (2013) tested the standard VOF implementation in the 

OpenFOAM framework, the interFoam solver, against the validation cases 

proposed by Hysing et al. (2009) evaluating the influence of the surface 

compression scheme. They conclude that the solver is suitable for two phase flow 

simulations in suchlike case configurations. However, parasitic currents, faulty 

pressure jumps and poor grid convergence were observed in their tests. 

Albadawi et al. (2013) presented the S-CLSVOF, a VOF/LS coupled method 

in the OpenFOAM platform. In this method, the LS is used to calculate the surface 

tension and the interfacial curvature. An experimental study was carried out to 

validate the method, where a bubble growth and detachment processes were 

studied. One of the obtained conclusions is that the interFoam standard 

implementation is inadequate for surface tension driven problems. 

Liu & Zhao (2014) presented experimental data on bubble trajectory in 

stagnant water and glycerol aqueous solution, in which a three-dimensional 

bubble trajectory is provided. They also propose correlations combining the 

dimensionless numbers Weber with Eötvös and Weber with Reynolds for bubble 

shape. 

Cano-Lozano et al. (2015) evaluated the performance of the interFoam and 

Gerris solvers for a case study of an ascending bubble in an initially quiescent 

medium. They concluded that the interFoam solution presented parasitic currents 

that remain even with mesh refinement, whereas in Gerris no parasitic currents 

were observed. It is worth noting that the Gerris solver employs Adaptive Mesh 

Refinement, whereas the standard interFoam implementation does not, therefore 

a proper comparison between both solvers should take that into account. 

Kassar (2016) and Kassar et al. (2018) have proposed an approach for 

interface capturing with a Point-Cloud method, inspired by Computer Graphics 

techniques used in 3D scanning applications. The interface is represented by a 

cloud of points, and the curvatures and normal vectors are extracted from the 

cloud and interpolated to the computational grid. The method was implemented 
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in the OpenFOAM platform and has shown significant improvements to the basic 

interFoam implementation. The solvers were evaluated with the proposed 

validation tests by Hysing et al. (2009) and other test cases. 

In geometric VOF, there are two main classes of advection schemes 

available: split and unsplit methods. The split methods decompose the advection 

equation into a set of one-dimensional advection equations, whereas the unsplit 

methods perform the advection in a single step.  

The first developed bounded split advection method in two dimensions is 

the Eulerian Implicit – Lagrangian Explicit (EI-LE) method (Tryggvason et al. 

2011), which was later expanded to three dimensions by Aulisa et al. (2007) in 

the EILE-3D method, however, it requires six advection and reconstruction steps.  

Rider & Kothe (1998) proposed one of the earliest unsplit advection 

schemes, within the PLIC framework. Trapezoidal flux regions were created by 

face center velocity vectors, which could overlap, therefore breaking volume 

fraction boundedness. A more recent progress in this field was achieved by Ivey 

& Moin (2017) that presented a conservative bounded unsplit scheme, applicable 

on unstructured meshes.  

Recently, Roenby et al. (2016) have proposed an advection numerical 

method, isoAdvector, that reconstructs the interface by exploring an iso-surface 

concept, and calculates the total transported volume of fluid through a face by 

the evolution of the wetted area of a reference phase within a time step. In their 

work, the isoAdvector method was implemented in the OpenFOAM platform as 

an independent solver, called interFlow, and was compared to different algebraic 

advection methods, showing superior results. 

Scheufler & Roenby (2019) further expanded on the isoAdvector method by 

employing an interface reconstruction scheme based on the calculation of a 

reconstructed distance function (RDF). The RDF method was devised by 

Cummins et al. (2005) and involves the construction of a smooth distance 

function from the PLIC reconstructed interface in order to perform the curvature 

computation by numerical differentiation. The combination of isoAdvector and 

RDF yielded second order accuracy on interface normal calculations. 

Su et al. (2018) evaluated the interFoam and interFlow solvers against 

experimental data of motions of single Taylor bubbles in vertical pipes. They 

observed that the simulated velocities did not agree with the experimental results, 
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however, they assess that the interFlow solver seems to be a promising tool and 

requires further studies.   

On the algebraic VOF class, several methods of the α field advection have 

been developed, such as the Compressive Interface Capturing for Arbitrary 

Meshes (CICSAM) (Ubbink, 1997) and Flux Corrected Transport (FCT) (Boris & 

Book 1973).  

1.2. Objectives  

The present work aims at studying gas bubble ascension in viscous media, 

evaluating the influence of the physical parameters involved in the phenomenon. 

For such goal, the present work will assess the performance of some of the 

aforementioned methods proposed in the literature: the point cloud normal and 

curvature computation, PC-VOF, the isoAdvector advection scheme, along with 

its RDF variant, and the standard interFoam. 

Preliminary validation tests with analytical solutions will be carried out, 

along with the benchmark cases proposed by Hysing et al. (2009). 

This work also proposes a coupled method that attains the advantages of 

these different approaches, which is tested against the benchmark data and the 

other assessed solvers. 

 



2. Mathematical Model 

The One Fluid model resolves only one set of conservation of mass 

and linear momentum equations, along with an advection equation of a 

marker function that indicates the phase distribution of the fluids in the 

computational domain.  

The marker function may be defined as the scalar variable  �̃� that follows 

the criterion below: 

{
    �̃� = 1,            𝑖𝑓   �⃗� 𝜖 Ψ1 

    �̃� = 0,            𝑖𝑓   �⃗� 𝜖 Ψ2 
 (1.2.1) 

where �⃗� is the position vector on the computational domain, Ψ1 is the region 

occupied by the reference phase, fluid 1, and Ψ2 is the region occupied by 

fluid 2. By integrating  �̃� over the region around a specific point 𝑥𝑖⃗⃗⃗⃗ , one will 

obtain: 

𝛼(𝑥𝑖⃗⃗⃗ ⃗, 𝑡) =  ∫  �̃�(�⃗�, 𝑡)𝑑∀
𝛿∀𝑖

 (1.2.2) 

In which 𝛼 is the volume fraction of the reference phase at a given point and 

time. Figure 2.1 shows a schematic of the phase distribution of a two phase 

flow, where 𝛼 it is equal to 1 in regions occupied entirely by fluid 1, and 0 in 

regions entirely occupied by fluid 2 (Fig.2.1). 

 

Figure 2.1 – Distribution of the 𝛼 field across a generic domain. 

 𝛼 = 1 

 𝛼 = 0 
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The fluid properties can be determined as a function of 𝛼 , as displayed 

below: 

𝜌 =  𝜌1𝛼 + 𝜌2 (1 − 𝛼)  (1.2.3) 

𝜇 =  𝜇1𝛼 + 𝜇2 (1 − 𝛼)  (1.2.4) 

The present work considers an incompressible, isothermal flow, 

whose state can be defined by the velocity and pressure fields 𝑣(�⃗�, 𝑡) 

and 𝑝(�⃗�, 𝑡), and the position of the interface. 

In order to determine the velocity and pressure fields, the mass 

conservation and linear momentum equations are employed, and are 

defined as: 

∇ ∙ �⃗⃗� = 0  (1.2.5) 

𝜕(𝜌�⃗⃗⃗�)

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗⃗� �⃗⃗�) = −∇⃗⃗⃗𝑝 + ∇⃗⃗⃗ ∙ [𝜇(∇ �⃗⃗� + ∇𝑇 �⃗⃗�)] +  

                                 +𝑓 + 𝜎 𝜅 𝛿(𝑛)n̂ (1.2.6) 

where �⃗⃗� is the velocity vector, 𝑝 is the pressure, 𝜌 is the density, 𝜇 is the 

viscosity and 𝑓 represents a body force, e.g. gravity, acting on the fluid. The 

term ∇⃗⃗⃗𝑝 represents the pressure gradient, and the term [𝜇(∇ �⃗⃗� + ∇𝑇 �⃗⃗�)] is 

the viscous stress tensor for incompressible Newtonian fluids.  

The last term on the right hand side of equation 2, 𝜎 𝜅 𝛿(𝑛)n̂, 

represents the surface tension force, where 𝜎 is the surface tension, 𝜅 is 

twice the local mean curvature of the free surface, 𝛿(𝑛) is the delta function 

that guarantees that the term is only applied in the interface region, 𝑛 is a 

normal coordinate to the interface, being zero at the interface, and n̂ is the 

interface unit normal vector. The normal vector and curvature terms are 

usually defined as: 

n̂ =  −
∇⃗⃗ α

|∇⃗⃗ α|
  (1.2.7) 

𝜅 =  ∇⃗⃗⃗ ∙ n̂  (1.2.8) 

The surface tension is commonly modeled by the Continuous 
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Surface Force (CSF) method (Brackbill et al. 1992), where the surface 

tension is considered to be constant throughout the interface, and only 

forces that are normal to the interface are taken into account. Those 

considerations allow the pressure jump across the interface to be dealt as 

a function of the surface tension and interface curvature. Thus, the surface 

tension force term is added to the momentum equation to account for the 

jump in the surface traction in the interface region, and it constitutes the 

manner with which the One Fluid model treats the pressure jump boundary 

condition across the interface. 

In order to determine the interface position across time, an advection 

equation is also resolved,  and is defined below: 

𝜕( 𝛼)

𝜕𝑡
+ ∇⃗⃗⃗ ∙ ( �⃗⃗�  𝛼) = 0 (1.2.9) 

 

 



3. Numerical Model 

In a large number of CFD applications, the commercial codes utilize the 

Finite Volume Method (FVM) as the discretization technique, due to its 

conservative nature. The FVM subdivides the continuous domain into 

control volumes, and integrates the transport equations over all existing 

control volumes in the computational grid. 

The general conservation equation for a generic flow quantity 𝜙 is given 

by: 

𝜕

𝜕𝑡
𝜌𝜙 + ∇ ∙ (𝜌�⃗⃗⃗�𝜙) = ∇ ∙ (Γ∇𝜙) + 𝑆𝜙 (3.1) 

where the first term on the LHS is the time derivative and the second term 

is the liquid convective flux, with 𝜌�⃗⃗⃗� as the mass flux per unit area (𝜌 is 

density and �⃗⃗⃗� is the velocity field. In the RHS there are the liquid diffusive 

and source terms, respectively. Γ represents the diffusivity coefficient. 

The time derivative term is discretized by integrating it over the control 

volume. A discretization over a control volume with an implicit Euler scheme 

is written as: 

∫
𝜕

𝜕𝑡
𝜌𝜙𝑑∀

∀
=  

𝜌𝑝
𝑖+1𝜙𝑃

𝑖+1−𝜌𝑝
𝑖 𝜙𝑃

𝑖

Δ𝑡
∀𝑃 (3.2) 

in which 𝜙𝑃
𝑖+1 = 𝜙(𝑡 + Δ𝑡) is the value taken by 𝜙𝑃 at a 𝑡 + Δ𝑡 time step, 

whereas 𝜙𝑃
𝑖  is the value from the previous time step. For the convective and 

diffusive terms, an integration over the control volume also takes place, and 

a subsequent transformation of the volume integral into a surface integral is 

done with the Gauss theorem, as shown below for the convective term: 

∫ ∇ ∙ (𝜌�⃗⃗⃗�𝜙)𝑑∀
∀

= ∮ �⃗⃗� ∙ (𝜌 �⃗⃗⃗�) 
𝐴𝑓

𝜙 𝑑𝐴 = ∑ �⃗⃗� ∙ (𝜌 �⃗⃗⃗� 𝐴)
𝑓
 𝜙𝑓  (3.3) 

where 𝑓 is the face over which the integral is calculated, 𝐴 is its area and �⃗⃗� 

is the face normal unit vector. 
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A similar process is performed for the diffusive term: 

∫ ∇ ∙ (Γ∇𝜙)
∀

𝑑∀= ∮ �⃗⃗� ∙ (Γ∇𝜙)𝑓𝐴
𝑑𝐴 = ∑ �⃗⃗� ∙ (Γ 𝐴 ∇𝜙)𝑓𝑓  (3.4) 

The face normal gradient can be approximated by the following 

scheme: 

�⃗⃗� ∙ ∇𝑓𝜙 =
𝜙𝑁−𝜙𝑃

|𝑑|
 (3.5) 

where 𝑑 is the vector between the center of cell 𝑃 and its neighboring cell 

𝑁, and it is orthogonal to the face plane. Lastly, for the source term, a 

linearization process is performed, followed by its integration over the 

control volume: 

𝑆𝜙 = 𝑆𝑐 + 𝑆𝑝  𝜙     ;      𝑆𝑝 ≤ 0   (3.6) 

∫ 𝑆𝜙𝑑∀
∀

= (𝑆𝑐+𝑆𝑝 𝜙)
𝑃
∀𝑃 (3.7) 

where 𝑆𝑐 and 𝑆𝑝 can be dependent on 𝜙.   

3.1 InterFoam solver 

The Open Field Operation and Manipulation (OpenFOAM) platform is 

a C++ open source toolbox for numerical solutions in continuum mechanics, 

such as computational fluid dynamics (CFD). It provides several 

precompiled solvers for various applications in fluid mechanics, and it is 

widely used in the scientific community.  

Amongst the available solvers, interFoam handles immiscible 

incompressible two phase flows, and has been subject to a wide variety of 

tests and evaluations over the years. It is indeed a robust tool, although 

many authors have assessed that it is unsuitable for some applications, 

many of which involve surface tension driven flows, due to the recurrent 

appearance of spurious currents in its solution. 

InterFoam is an algebraic VOF type solver, as it does not perform the 

surface reconstruction step. It advects the 𝛼 field algebraically, using the 

FCT (Flux Corrected Transport) methodology. 

The FCT method is a technique that guarantees that a hyperbolic 
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problem’s solution is bounded. A demonstration of the FCT method with the 

transport equation of a generic flow quantity ∅ is performed in (Damián, 

2013) and summarized here: 

𝜕∅

𝜕𝑡
+ ∇ ∙ �⃗� = 0 (3.8) 

An explicit temporal discretization of the transport equation is: 

∅𝑃
𝑖+1−∅𝑃

𝑖

∆𝑡
∀𝑃 + ∑  �⃗⃗� ∙ ( �⃗� 𝑆)

𝑓𝑓 = 0 (3.9) 

where 𝑃 is the index of the current cell, and 𝑓 is its face index, 𝑖 is the index 

for the temporal steps, ∀𝑃 is the cell volume and 𝑆 = 𝑆 �⃗⃗� is the face area 

vector for face 𝑓. By isolating ∅𝑃
𝑖+1 and denoting 𝐹𝑓 = (�⃗� ∙ 𝑆)𝑓 as the total 

transport flux due to a velocity, one obtains: 

∅𝑃
𝑖+1 = ∅𝑃

𝑖 −
∆𝑡

∀𝑃
(𝐹

𝑃+
1

2

𝑓
− 𝐹

𝑃−
1

2

𝑓
) = 0 (3.10) 

One can achieve boundedness of the temporal solution by either 

limiting the face values or face fluxes. The correction is performed by 

computing a flux 𝐹𝐿 value obtained by a low order discretization scheme 

with guaranteed monotonic results, and an 𝐹𝐻 obtained by a high order 

discretization scheme.  

An anti-diffuse flux is defined as: 

�̌� = 𝐹𝐻 − 𝐹𝐿  (3.11) 

and the corrected flux, 𝐹𝐶, is computed as: 

𝐹𝐶 = 𝐹𝐿 + 𝜆�̌� (3.12) 

Here, 𝜆  is the weighing factor, and varies between 0 and 1. Zalesak (1979) 

corrects the value at time 𝑖 + 1 firstly by a low order flux, 𝐹𝐿 and then adding 

an anti-diffuse flux, �̌�, limited by 𝜆.  

∅𝑃
𝑖+1 = (∅𝑃

𝐿)
𝑖
−

∆𝑡

∀
(�̌�

𝑃+
1

2

 𝜆
𝑃+

1

2

− �̌�
𝑃−

1

2

 𝜆
𝑃+

1

2

) (3.13) 

where  
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(∅𝑃
𝐿 )𝑖 = ∅𝑃

𝑖 −
∆𝑡

∀
(𝐹

𝑃+
1

2

𝐿
− 𝐹

𝑃−
1

2

𝐿
) (3.14) 

In this case, 𝜆 depends on the net fluxes of all faces 𝑓 in cell 𝑃. The 

maximum and minimum net fluxes are defined as: 

𝑄𝑃
+ = (∅𝑃

𝑚𝑎𝑥 − ∅𝑃
𝐿)

∆𝑡

∀
 (3.15) 

𝑄𝑃
− = (∅𝑃

𝐿 − ∅𝑃
𝑚𝑖𝑛)

∆𝑡

∀
 (3.16) 

and the weighing factors of �̌� are defined below: 

𝜆𝑖
± = {

min {1,
𝑄𝑖

±

Κ𝑖
±} ,    𝑖𝑓 Κ𝑖

± > 0,

            0,             𝑖𝑓 Κ𝑖
± < 0 

   (3.17) 

where Κ is the summation of all inflows and outflows for �̌�.  

InterFoam’s FCT method is called Multidimensional Universal Limiter 

for Explicit Solution (MULES) and works similarly to the method presented 

by Zalesak (1979), but employs an iterative process to determine the 

weighing factors. 

In order to decrease interface smearing, the interFoam implementation 

has an artificial compression term added to the advection equation, as 

shown below: 

𝜕( 𝛼)

𝜕𝑡
+ ∇⃗⃗⃗ ∙ ( �⃗⃗�  𝛼)  + ∇⃗⃗⃗ ∙ [�⃗⃗�𝑐  𝛼 (1 − 𝛼)] = 0 (3.18) 

where the 𝛼(1 − 𝛼) term is added to ensure that the compression is only 

performed in the interface region, and �⃗⃗�𝑐 is the so called compression 

velocity, defined in Eq (3.19): 

�⃗⃗�𝑐 = min[𝐶𝛼|�⃗⃗�|,𝑚𝑎𝑥(|�⃗⃗�|)]
∇⃗⃗⃗𝛼

|∇⃗⃗⃗𝛼|
 (3.19) 

where C𝛼 is the compressibility term, which can be set to zero, if one is to 

disregard the compressibility effect entirely, or to unity. Although MULES is 

less accurate than the available geometric advection schemes, it does not 

require surface reconstruction, which ensures mass conservation and 

computational efficiency (Gopala & van Wachem, 2008). 

Lastly, the interFoam implementation of the VOF linear momentum 



3.Numerical Model ________________________________________________ 28 
 

 
 

conservation equations is defined as: 

𝜕(𝜌�⃗⃗⃗�)

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗⃗� �⃗⃗�) = ∇⃗⃗⃗ ∙ [𝜇(∇ �⃗⃗� + ∇𝑇 �⃗⃗�)] − ∇⃗⃗⃗𝑝𝑟𝑔ℎ + �⃗�𝑆𝑇 (3.20) 

where ∇⃗⃗⃗𝑝𝑟𝑔ℎ is the gradient of the modified pressure, which incorporates the 

gravitational force (hydrostatic pressure), and it is defined as 

 𝑝𝑟𝑔ℎ = 𝑝 − 𝜌 �⃗� ∙ �⃗�                                                           (3.21) 

and the �⃗�𝑆𝑇 term represents the surface tension force, computed by the 

aforementioned CSF model, in which: 

�⃗�𝑆𝑇 = 𝜎𝜅∇⃗⃗⃗𝛼 (3.22) 

3.2 Point Cloud curvature computation 

The Point Cloud VOF algorithm presented by Kassar et al. (2018) is 

an interface reconstruction method, and performs a superior estimation to 

the curvature value, 𝜅 = 𝜅1 + 𝜅2, where 𝜅1 and 𝜅2 are the principal 

curvatures at a given point on the interface surface.  

As previously mentioned, the issue with the standard normal vector 

and curvature computation is that the 𝛼 field undergoes abrupt changes 

across the interface region, resulting in an imprecise estimation of the 

surface tension force term. The Point Cloud method resolves this issue by 

applying the procedures described in this section. 

At every iteration within a time step, the algorithm interpolates the 𝛼 

values stored in the center of each cell, to their respective cell vertexes. For 

every cell, it identifies the edges whose vertexes hold interpolated 𝛼 values 

greater and lesser than 0.5, or vice e versa. Those edges are referred to as 

interfacial edges. 

Subsequently, the method computes the coordinates of the point 

within the cell edge where the 𝛼 value is precisely 0.5, i.e., the intersecting 

points between the interface surface and the computational mesh. This is 

performed by linear interpolation, as shown in the following equation.  
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𝑃𝑒
⃗⃗⃗⃗ = 𝑃1

⃗⃗ ⃗⃗ + (𝑃2
⃗⃗⃗⃗⃗ − 𝑃1

⃗⃗ ⃗⃗ )
0.5−𝛼1

𝛼2−𝛼1
  (3.23) 

where 𝑃𝑒
⃗⃗⃗⃗  is the intersection point between the edge and the interface, 𝑃1

⃗⃗ ⃗⃗  

and 𝑃2
⃗⃗⃗⃗⃗ are the first and second vertex points and 𝛼1 and 𝛼2 are the 𝛼 values 

associated with  𝑃1
⃗⃗ ⃗⃗  and 𝑃2

⃗⃗⃗⃗⃗, respectively.     

An initial estimate of the normal vector is also performed by computing 

the interpolated values of the gradient of the 𝛼 field in points 𝑃1
⃗⃗ ⃗⃗  and 𝑃2

⃗⃗⃗⃗⃗. 

The next step is a geometric refinement of the normal vector by a 

Least-Squares Plane Fitting approach. For every interfacial edge and its 

interpolated point 𝑃𝑒, a sub-set of points in their vicinity is selected, as shown 

in Fig. 3.1. The sampled points belong to the interfacial edges of the 

neighboring cells to the point 𝑃𝑒.   

 
Figure 3.1. Sub-set of neighboring points around 𝑃𝑒 (Kassar et al. 2018). 

The algorithm samples two layers of the neighboring points in order to 

increase accuracy. This is the methodology by which the Point Cloud is 

generated at every reconstruction step. The normal vector is defined as the 

normal to the plane that best comprises the sampled cloud of points in the 

vicinity of 𝑃𝑒, by minimizing the objective function: 

𝑄(�⃗⃗⃗�) = ∑ [�⃗⃗⃗�  ∙ (𝑃𝑖  − 〈𝑃𝑖〉)]
2𝑁

𝑖=0  (3.24) 

where 𝑁 is the number of points in the sub-set, �⃗⃗⃗� is the plane normal vector, 

𝑃𝑖  is a point from the subset and 〈𝑃𝑖〉 is the centroid of the sub-set. The 

minimization problem is described in more detail by Kassar et al. (2018). 

The refined normal vector �̂� is taken as the resulting vector �⃗⃗⃗�. 

The curvature estimation for a point 𝑃0 is performed by a normal fitting 

method, based on the neighboring points. The algorithm defines a local 

system (�̂�, 𝑣, �̂�), where �̂� is the normal vector at 𝑃0, and �̂�  ×  �̂�  =  �̂�. The 
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local system is defined as the local frame with its origin at point 𝑃0. 

The projection of the normal vector 𝑛�̂� of the neighboring points, 𝑃𝑖, at 

the local frame is given by (𝑛𝑢𝑖, 𝑛𝑣𝑖), defined as: 

𝑛𝑢(𝑢, 𝑣) =  𝜈1  +  𝑤11𝑢 + 𝑤12𝑣 +  𝑜(𝑢2  +  𝑣2) (3.25) 

𝑛𝑣(𝑢, 𝑣) =  𝜈2  + 𝑤21𝑢 + 𝑤22𝑣 +  𝑜(𝑢2  +  𝑣2 ) (3.26) 

where 𝑤11, 𝑤12, 𝑤21 and 𝑤22 are the normal vector derivatives, and 𝜈1and 

𝜈2 are equal to 𝑛𝑢0(0,0) and 𝑛𝑣0(0,0). The curvature estimation can be 

obtained by solving an objective function with a constraint, further explained 

in Kassar et al. (2018). The objective function can be simplified into two 

minimization problems, for the 𝑢 and 𝑣 components: 

min∑ (𝜈1  +  𝑤11𝑢𝑖  +  𝑤12𝑣𝑖  −  𝑛𝑢𝑖)
2𝑁

𝑖  (3.27) 

min∑ (𝜈2  + 𝑤21𝑢𝑖  +  𝑤22𝑣𝑖  −  𝑛𝑣𝑖)
2𝑁

𝑖  (3.28) 

The solution of the minimization problems above provides an accurate 

approximation of the 𝑤11, 𝑤12, 𝑤21 and 𝑤22 values. The curvatures are the 

eigenvalues of the Weingarten curvature matrix 𝑊: 

𝑊 = − [
𝑤11 𝑤12

𝑤21 𝑤22
] (3.29) 

The curvatures are projected onto the cells, and the surface tension 

term on the linear momentum equation can be calculated. 

3.3 isoAdvector field advection 

Roenby et al. (2016) presented the isoAdvector scheme, which 

constitutes an algorithm with the two basic steps for a geometric advection 

method, the interface reconstruction and the advection step. The procedure 

is briefly described in this session. 

The concept around the reconstruction step is based on the premise 

that the notion of the interface being defined by the points of 𝛼 = 0.5 is 

incorrect. They argue that the correct isovalue is the one that cuts the cell 

into two sub-cells with a volumetric proportion equivalent to the 𝛼 value in 

the cell center.  
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The procedure performed in order to identify the interface points 

begins by an interpolation of the 𝛼 values from the cell centers into the cell 

vertexes. The algorithm subsequently identifies the pairs of connected 

vertexes whose interpolated volume fraction 𝑓 values are closest to the 

volume fraction of the current cell, below and above. The edge between 

these vertexes will contain the point with the correct isovalue. Equation 

(3.30) displays the described procedure. 

𝑥𝑐𝑢𝑡 = 𝑒𝑠 +
𝑓−𝑓𝑠

𝑓𝑒−𝑓𝑠
(𝑓𝑒 − 𝑓𝑠) (3.30) 

where 𝑒𝑠 and 𝑒𝑒 are the start and end vertexes of an interfacial edge, 𝑓𝑠 and 

𝑓𝑒 are their interpolated volume fractions. To precisely locate the cut point 

𝑥𝑐𝑢𝑡, another pair of points, between 𝑒𝑠and 𝑒𝑒, whose isovalues 𝑓 yield 𝛼 

values just above and below the cell’s volume fraction, are located. A 

geometrical evaluation of all found points result in four polynomial 

equations, which can be represented in a 4𝑥4 Vandermonde matrix. Solving 

it by Newton’s method, one can obtain the 𝑓 value that yields the correct 

volume fraction of the cell. This, however, results in a non-continuous 

interface surface, because adjacent cells might not share the same 

isovalue.  

The interface advection step tackles the challenge of estimating the 

volume transport of a reference phase across a face within a time step 

[ 𝑡 , 𝑡 + ∆T], defined by 

∆∀𝑗(𝑡, ∆𝑡) ≈  
∅𝑗(𝑡)

|𝑆𝑗|
∫ 𝐴𝑗(𝜏)𝑑𝜏

𝑡+∆𝑡

𝑡
 (3.31) 

where ∆∀𝑗 is the transported volume, ∅𝑗 is the volumetric face flux, 𝑆𝑗 is the 

normal at face 𝑗, and 𝐴𝑗 is the submerged area in a reference fluid phase. 

Equation (3.31) states that integrating the time evolution within a time step 

of the area of a cell face submerged in a reference phase yields the volume 

of fluid transported across a face.  

The area is calculated from the isovalue at the cell upwind of face 𝑗, 

and the motion of the iso-face in the time step is approximated by the 

velocity field in surrounding cells. This is done by finding the geometric face 
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center of the isoface, 𝑥𝑠 and the unit normal vector, �̂�. The velocity data is 

then interpolated to this center point. The cell is divided into tetrahedral 

subcells, all containing the cell center, and the tetrahedron containing 𝑥𝑠 is 

identified. The velocity value 𝑈(𝑥𝑠) is then interpolated to the tetrahedron 

vertexes, and the resulting values of 𝑈 are dotted with the isoface unit 

normal �̂�. 

 The motion of the isosurface can be estimated by the time evolution 

of the intersection line between the face and the interface. Considering the 

vertexes of a hexagonal face shown in figure 3.2a, the time evolution can 

be estimated by calculating a list of times at which the face vertexes are 

reached by the intersection line. That estimation is defined below: 

𝑡𝑖 = 𝑡 + (𝑋𝑖 − 𝑥𝑠)
n̂s

𝑈𝑠
 (3.32) 

in which 𝑡𝑖 varies between 𝑡 and the amount of face vertexes. Figure 3.2b 

illustrates the time evolution by depicting the face-interface intersection at a 

time step 𝑡𝑖 with the line AB, and the intersection at a further time step 𝑡𝑖+1 in 

the line segment CD. The time varying line, �̃��̃�, represents the interface 

motion. Thus, the points �̃� and �̃� can be found by: 

�̃�(𝜏) = 𝐴 +
𝜏−𝑡𝑖

𝑡𝑖+1−𝑡𝑖
(𝐷 − 𝐴) (3.33) 

�̃�(𝜏) = 𝐵 +
𝜏−𝑡𝑖

𝑡𝑖+1−𝑡𝑖
(𝐶 − 𝐵) (3.34) 

 

Figure 3.2 – The time evolution of the interface position, represented by the 

dotted line segment, through a hexagonal cell face (Roenby et al. 2016). 

A list of times 𝑡′ of size 𝑁 is subsequently generated with values 
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between 𝑡 and 𝑡 + Δ𝑡, and the time integral in Eq. (3.35) can be divided as 

shown below: 

∫ 𝐴𝑗(𝜏)𝑑𝜏
𝑡+∆𝑡

𝑡
= ∑ ∫ 𝐴𝑗(𝜏)𝑑𝜏

𝑡i+1
′

𝑡𝑖
′

𝑁−1
𝑖=1  (3.35) 

where 𝑡𝑖
′ < 𝜏 < 𝑡𝑖+1

′ . The submerged area in the reference fluid can be 

written as: 

𝐴𝑗(𝜏) = 𝐴𝑗(𝑡𝑖
′) +

1

2
sign(𝑈) |𝐴�̃�(𝜏) × 𝐵�̃�(𝜏)| = �̌�𝑖𝜏

2 + 𝑄𝑖𝜏 + 𝐴𝑗(𝑡𝑖
′) (3.36) 

where the polynomial coefficients �̌�𝑖 and 𝑄𝑖 can be analytically calculated 

from 𝐴, 𝐵, �̃� and �̃�. A more detailed description can be found in (Roenby et 

al. 2016). The contribution of the sub-intervals 𝑡i
′ to 𝑡i+1

′  can be calculated 

by: 

         ∫ 𝐴𝑗(𝜏)𝑑𝜏
𝑡i+1
′

𝑡𝑖
′

=
1

3
[𝑡i+1

′3 − 𝑡i
′3]�̌�𝑖 +

1

2
[𝑡i+1

′2 − 𝑡i
′2]𝑄𝑖 + 

                         + [𝑡i+1
′ − 𝑡i

′]𝐴𝑗(𝑡i
′)          (3.37) 

The solution of Eq.(3.37) gives an estimate of the amount of fluid 

∆∀𝑗(𝑡, ∆𝑡) of the reference phase 𝛼 that has been transported through face 

𝑗. 

3.4 isoRDF reconstruction 

Scheufler & Roenby (2019) expanded the interface reconstruction 

through isovalue and volume fraction equivalence by constructing an RDF 

(Reconstructed Distance Function) based on the VOF data.  

The RDF values are constructed by an averaging process of the 

distances from the cell center of a specific cell to the interfaces contained in 

itself and its neighboring cells. They are then stored in the cell centers. For 

a cell 𝑖, the RDF constructed in its cell center is defined as below: 

𝐷𝑗 =
∑𝑤𝑖𝑗�̃�𝑖𝑗

∑𝑤𝑖𝑗
  (3.38) 

where �̃�𝑖𝑗 = �̂�𝑠 ∙ (𝑥𝑗 − 𝑥𝑆) is the distance from cell 𝑗 to the interface in all 
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neighbor cells 𝑖, and 𝑤𝑖𝑗 is the weighing factor, defined as: 

𝑤𝑖𝑗 = 
|n̂𝑠∙(𝑥𝑗−𝑥𝑠)|

�̌�

|𝑥𝑗−𝑥𝑠|
�̌�

 (3.39) 

The value of the exponent �̌� is also a subject of discussion. Scheufler 

& Roenby (2019) argue that a value of �̌� = 2 is a reasonable choice, as it is 

less expensive to compute.  

3.5 Coupled methods presentation 

In this section, a PC-VOF/isoAdvector and a PC-VOF/isoRDF coupled 

methods are presented and described in detail. The goal is to combine the 

enhancements in normal vector and curvature computation of the PC-VOF 

method with the isoAdvector and isoRDF schemes.  

In the current implementation for the PC-VOF/isoAdvector coupled 

method, the PC-VOF identifies the interfacial edges and extracts the normal 

field and curvatures based on a standard 𝛼 = 0.5 isosurface concept to be 

used in the surface tension force term 𝐹𝑆𝑇. The isoAdvector, on the other 

hand, reconstructs the interface based on its variable isovalue concept and 

performs the advection step on the reconstructed interface. Thus, there is 

no interaction between the methods. A similar coupling method is employed 

for the PC-VOF/isoRDF solver. 

Earlier implementations of the coupled method had the isoAdvector 

handling the reconstruction step, and the PC-VOF calculating the normals 

and curvatures based on the isoAdvector reconstructed interface. The main 

issue with this exchange of information is that, since each interfacial cell has 

its own associated isosurface that cuts it into subcells with the correct 

volume fraction, the resulting interface is not continuous. Although this is 

arguably a better representation of the interface, regarding volume fraction 

conservation, the discontinuous surface harms the normal field and 

curvature estimations. Kassar et al. (2018) argues that the 0.5 fixed isovalue 

better represents the shape of the interface. Figure 3.3 displays a side-by-

side view of the topology of a sphere generated by the fixed 0.5 isovalue 

method and the variable isovalue approach of isoAdvector.  
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Figure 3.3 – Resulting interface topology of a standard 𝛼 = 0.5 isovalue 

reconstruction method (left) and the isoAdvector approach (right). 

A secondary issue is that the isoAdvector method often generates 

spurious interfacial points in non-interfacial regions, due to a clipping 

tolerance issue. A method was created in this work aiming to identify and 

remove the spurious points, but it proved to be a difficult task, especially in 

cases where there is interface breakup. 

Another iteration of the coupled method involved using the PC-VOF 

normal estimation to calculate the isoface unit normals for the isoAdvector 

reconstructed surface, and using them to dot the interpolated velocity values 

𝑈(𝑥𝑠) at the interfacial points 𝑥𝑠. 

 

 



4. Results and Discussion 

In order to assess the performance of the different methods 

contemplated in the present work, three simulation set-ups were chosen. 

Initially, two validation tests with analytical results were carried out. The 

problem of an oscillating drop embedded in a gas medium is tested for all 

methods, followed by a square interface problem. Lastly, benchmark cases 

of a bubble in a liquid column are performed, and quantitative data is 

generated in order to obtain a thorough evaluation of the studied flow 

quantities. Table 4.1 summarizes the different evaluated methods in this 

section. 

Table 4.1 – Description of the solvers used in the present work. 

Solver Tag Brief Description 

interFoam InterFoam Standard multiphase flow solver in OpeFOAM 

interFlow isoAdvector IsoAdvector geometric advection scheme 

IsoRDF isoRDF IsoAdvector coupled with an RDF scheme 

PC-VOF PC-VOF Point Cloud curvature and normals computation 

PC-VOF & 

isoAdvector 

PC-VOF/isoAdv PC-VOF and isoAdvector coupled method 

PC-VOF & isoRDF PC-VOF/RDF PC-VOF and isoRDF coupled method 

 

4.1 Oscillating Drop 

The oscillating drop case consists of a two dimensional drop of 

kerosene immersed in air, as an approximation of a three dimensional 

cylinder jet. The linear theory for the oscillation frequency of the jet, ωn, 

presented by Fyfe et al. (1988) as an extension to the one developed by 

Rayleigh (1879) is defined as:  

𝜔𝑛 = √
𝜎(𝑛𝜔

3 −𝑛𝜔)

(𝜌𝑑+𝜌𝑒)𝑟0
3  (4.1) 

where 𝜎 is the surface tension, 𝜌𝑑 is the density of the drop, 𝜌𝑒 is the density 
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of the fluid medium, 𝑛𝜔 is the oscillation mode, and 𝑟0 is the radius of the 

undisturbed drop. The 𝑧-axis direction of the jet is significantly greater than 

its radius, which makes it safe to approximate the oscillation problem into two 

dimensions. The flow parameters for the case with an undisturbed radius of 

𝑟0 = 0.0125 𝑐𝑚 and oscillation mode of 𝑛𝜔 = 2 are shown in Table 4.2. 

Table 4.2: Flow parameters of the oscillating drop case. 

Fluid 
Density Viscosity Interface Tension 

𝝆(𝒌𝒈/𝒎𝟑) 𝝁(𝑷𝒂 ∙ 𝒔) 𝝈(𝑵/𝒎) 

Kerosene 820 0  

0.03 Air 1.3 0 

 

The case initialization is performed under the recommendations of de 

Melo (1995), where the drop takes the initial shape on an ellipse with an 

aspect ratio of 𝑎/𝑏 =1.4 given by: 

𝑎

𝑏
= (

𝑟0+𝑟𝜖

𝑟0−𝑟𝜖
) (4.2) 

where 𝑟0 and 𝑟𝜖 are the largest and smallest axis of the ellipse. Its area 𝐴 is 

equal to the undisturbed circular drop’s area.  

The air domain is defined as the rectangular area where the drop is 

inserted. The boundary patches of the domain edges were set to zero 

gradient conditions in both velocity and pressure. The simulation time was 

set to 3 𝑚𝑠. 

A grid convergence test took place with quadrangular mesh spacing ℎ 

of 1/32, 1/64, 1/128 and 1/256, evaluating the influence of the methods 

investigated in this work in their prediction of the aspect ratio 𝑎/𝑏. The time-

step was set according to the recommendations of Kassar (2016).  

The standard interFoam (Fig. 4.1-a) were unable to attain a mesh 

independent solution with ℎ=1/256, and it under predicted both frequency 

and amplitude. The isoAdvector (Fig. 4.1-b) method presented an unstable 

solution (unsmooth amplitudes), but it was able to accurately predict the 

frequency. However, the amplitude decreased over time, even for the finest 

mesh. IsoRDF (Fig. 4.1-c) under predicted the frequency, but had good 
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agreement for amplitude values. The PC-VOF (Fig. 4.1-d) showed far 

superior results in comparison to all methods.  

Coupling isoAdvector and isoRDF with PC-VOF (Fig. 4.1-e, 4.1-f) 

showed no significant improvement for the oscillating bubble case, 

particularly with the PC-VOF/isoRDF, where the solution was nearly 

identical to the one obtained by the pure isoRDF method.  

  

(a)   interFoam                                                   (d) PC-VOF 

  

         (b) isoAdvector                                          (e) PC-VOF/isoAdv 

   

             (c) isoRDF                                            (f) PC-VOF/isoRDF 

Figure 4.1 – Time evolution of the aspect ratio of the oscillating bubble. 

4.2 Square Interface 

The Square Interface case is a two-phase setup of a 4 x 4 square of 
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what will be referred to as fluid 2, embedded in a 10 x 10 domain of a 

reference fluid 1. The fluid densities and viscosities were set to unity, and a 

zero gravity condition was set. The goal is to track the interface as it evolves 

from a square into a circular shape. The case was tested for four surface 

tension values, 𝜎 = 0.1, 1, 10 and 100 . The simulation time was set to 20 𝑠 

for the 𝜎 = 1, 10 and 100 cases and 80𝑠 for the 𝜎 = 0.1 case, in order to 

ensure that steady state was achieved. A single quadrangular mesh of ℎ =

1/80 spacing was selected for this case, and the time step was grounded 

by a maximum Courant number of 𝐶𝑜 = 0.1. 

A useful way to analyze the main differences between the methods is 

to plot the time evolution of the interface’s circularity. The circularity of a 

surface is the ratio between the circle whose area is equivalent to the 

surface’s area, 𝐴𝑠, and the perimeter of the latter, 𝑃𝑠: 

𝐶𝑠𝑞𝑢𝑎𝑟𝑒 = (
𝐴𝑠

𝑃𝑠
) (4.3) 

and it takes a value of 1 when the interfacial shape becomes a perfect circle. 

Figure 4.2 displays the circularity time evolution for the different case 

configurations. 

 

(a)   𝜎 = 0.1                                                         (b) 𝜎 = 1 

 

(c)   𝜎 = 10                                                         (d) 𝜎 = 100 

Figure 4.2 – Time evolution of circularity of the square interface. 
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All tested methods presented good agreement amongst themselves in 

regards to the deformation of the interface over time. In 𝜎 = 0.1 and 𝜎 = 1 

(Fig. 4.2-a, 4.2-b) a minor variation was observed in the interFoam, 

isoAdvector and isoRDF cases in the transient region from the other cases. 

However, all cases eventually reach a circularity value of unity. 

Figure 4.3 displays the evolution of the interface shape, and shows 

that all methods were able to accurately converge to a perfect circle, in a 

very short time. Although in some of the solutions the position of the circle 

varied, the circular shape has been preserved. 

          𝑡 = 0                   𝑡 = 5               𝑡 = 10                𝑡 = 15               𝑡 = 20 

 

Figure 4.3 – Time evolution of the interfacial shape. 

4.3 Two-dimensional Benchmark  

Hysing et al. (2009) proposed a benchmark problem consisting of a 

two-dimensional configuration of a rising bubble in a liquid column, also 

providing solutions of three independent software codes. The proposed 

rising gas bubble case has two set-ups: Test Case 1 (TC1), which consists 

of a surface tension driven flow, and Test Case 2 (TC2), where the inertial 

forces are dominant. TC1 is particularly attractive because of its sensitivity 

to the different methodologies for normal and curvature calculations in the 

surface tension force term. In TC2, the bubble develops a skirted topology, 

which is also challenging to the numerical solvers. 

Figure 4.4 shows the initial configuration of the test cases, in which Ψ1 

represents the liquid phase and Ψ2 represents the gas phase. A two-

dimensional rectangular domain (1 × 2) represents the liquid column, where 

the circular gas bubble is initialized, centered at (𝑥, 𝑦)  =  (0.5, 0.5) with an 
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initial radius of 𝑟𝑏0  =  0.25. The boundary conditions at the top and bottom 

walls are of no slip, and free slip is set for the left and right walls. 

Table 4.3 lays out the physical parameters of the test cases. The flow 

is governed by a set of dimensionless numbers, shown in Table 4.4:                

(i) Reynolds number, which is the ratio between inertial and viscous forces; 

(ii) Weber number, which corresponds to the ratio between inertial and 

surface tension forces; (iii) Eötvös number, which characterizes the ratio 

between body and surface tension forces; (iv) Capillary number, which 

corresponds to the ratio between viscous and surface tension forces, (v) 

Ratio of densities and (vi) ratio of viscosities. They are defined below as: 

 Re =
𝜌1 𝑉 𝐷

𝜇1
    ;       We =

𝜌1 𝑉2 𝐷

𝜎
    ;     Eo =

(ρ1−𝜌2)𝑔 𝐷2

𝜎
;   

𝐶𝑎 =
𝜇1𝑉

𝜎
=

𝑊𝑒

𝑅𝑒
         ;          

𝜌1

𝜌2
         ;           

𝜇1

𝜇2
 (4.4) 

 

Figure 4.4 – Set-up of the two-dimensional benchmark cases (Klostermann, et al. 2013). 

Table 4.3. Quantities for the benchmark configurations (Hysing et al. 2009).  

TC 𝜌1 𝜌2 𝜇1 𝜇2 𝑔 𝜎 

1 1000 100 10 1 0.98 24.5 
2 1000 1 10 0.1 0.98 1.96 

Table 4.4. Dimensionless quantities for the benchmark cases (Hysing et al. 2009).  

TC 𝑅𝑒 𝑊𝑒 𝐸𝑜 𝐶𝑎 ρ1 / 𝜌2 μ1/ 𝜇2 

1 35 9.5 10 0.3 10 10 
2 35 125 125 3.6 1000 100 

Ψ1 

Ψ2 
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The main idea behind the development of benchmark cases for testing 

numerical schemes is the use of quantitative assessments of physical 

properties rather than qualitative comparisons. To this end, some flow 

quantities were tracked: mean rise velocity �⃗⃗�𝑟𝑖𝑠𝑒 , center of mass �⃗⃗�𝑐 and 

circularity 𝐶. They are defined as: 

�⃗⃗�𝑟𝑖𝑠𝑒 =
∫ �⃗⃗⃗�
Ψ2

𝑑𝐴

∫ 𝑑𝐴
Ψ2

;    �⃗⃗�𝑐 =
∫ �⃗�
Ψ2

𝑑𝐴

∫ 𝑑𝐴
Ψ2

;     𝐶 =
2𝜋𝑟𝑏0 

𝑃𝑏
  (4.5) 

where Ψ2 represents the region occupied by the gas bubble, �⃗⃗�𝑟𝑖𝑠𝑒 is the rise 

velocity, 2𝜋𝑟𝑏0 is the perimeters of the initial circular bubble and 𝑃𝑏 is the 

perimeter of the deformed bubble. 

For both TC1 and TC2, a grid test with four mesh resolutions was 

selected, with mesh spacing of ℎ = 1/40, 1/80, 1/160 and 1/320. Both 

quadrangular and triangular meshes were employed. Figure 4.5 shows 

these two mesh arrangements for the largest mesh size (ℎ = 1/40). 

 

Figure 4.5 – Quad. and tri. meshes for the rising bubble test (Kassar, 2016) 

Prior to simulating the rising bubble problem, an initialization test with 

a zero gravity condition was carried out in order to relax the Heaviside 

aspect of the 𝛼 field profile in interfacial regions. The solution from the 

relaxing bubble is usually employed as initial conditions for the rising bubble 

simulation. This test is particularly useful to evaluate the appearance of 

spurious currents in the interface region. In the present work, the 

initialization test was only performed for the Test Case 1 configuration in 

quadrangular and triangular meshes, and its results are presented below. 
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4.3.1 Relaxing Condition 

In these tests, a zero gravity condition is set to the entire domain. The 

viscous forces must mitigate any translational velocity (�⃗⃗� = 0) both in the 

gas bubble region and on the liquid domain. The initial position is expected 

to be maintained at �⃗� = (0.5, 0.5), and the simulation is run for 3 seconds. 

The occurrence of spurious velocities, as previously mentioned, is due 

to improper computation of the curvature values in the CSF model, and are 

known to generate unphysical pressure jumps.  

For the two dimensional bubble, the curvature is given by 1/𝑟0, and 

the pressure jump is given by: 

Δ𝑃 = 𝜎𝜅 =
𝜎

𝑟0
 (4.6) 

For TC1, the pressure jump is Δ𝑃 = 98 𝑃𝑎. In order to evaluate the 

pressure fields of the selected numerical models, the pressure jump is 

computed as  

Δ𝑃 =
∫ 𝑝𝑑∀Ψ2

∫ 𝑑∀Ψ2

−
∫ 𝑝𝑑∀Ψ1

∫ 𝑑∀Ψ1

 (4.7) 

Figure 4.6 depicts the time evolution of the maximum magnitude 

velocity field generated by the spurious currents for quadrangular meshes. 

By analyzing Fig. 4.6, it is possible to identify a reduction in the spurious 

currents by the PC-VOF algorithm (Fig. 4.6-d) in comparison to the standard 

interFoam (Fig. 4.6-a), although the latter is able to reduce the spurious 

currents over time. PC-VOF presented a significant amount of numerical 

oscillations for the ℎ = 1/320 grid. The spurious velocities in isoAdvector 

(Fig. 4.6-b) have increased in comparison to interFoam, and its values were 

relatively constant throughout the simulation time. The maximum velocity 

magnitude obtained by the isoRDF (Fig. 4.6-c) solver had nearly 

undetectable differences when compared to the one obtained by 

isoAdvector. isoAdvector and isoRDF were not able to obtain mesh 

refinement convergence, unlike the other solvers. The PC-VOF/isoAdvector 

coupled method (Fig. 4.6-e) had similar results to PC-VOF along with a 
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more stable solution for the 1/h = 320 mesh. Coupling isoRDF with PC-VOF 

(Fig. 4.6-f) also yielded similar results to the PC-VOF/isoAdvector method.  

    

                             (a) interFoam                                                           (d) PC-VOF 

    
 

          (b) isoAdvector                                        (e) PC-VOF/isoAdv 

    

               (c) isoRDF                                           (f) PC-VOF/isoRDF 

Figure 4.6 – Maximum Velocity Magnitude for the TC1 zero gravity case with quad. mesh.  

The velocity fields on triangular or unstructured meshes saw an overall 

increase in magnitude when compared to quadrangular meshes for all 

methods. The solutions obtained by isoAdvector (Fig. 4.7-b) and isoRDF (Fig. 

4.7-c) have also presented a certain amount of numerical oscillations. The 

original PC-VOF (Fig. 4.7-d) achieved promising results, with its maximum 

velocity converging to values with orders of magnitude of 10−2 𝑚/𝑠. However, 

the coupled methods (Fig. 4.7-e, 4.7-f) obtained a more stable time evolution 

with similar orders of magnitude. 
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                           (a)   interFoam                                                           (d) PC-VOF 

  

            (b) isoAdvector                                                 (e) PC-VOF/isoAdv 

   

             (c) isoRDF                                              (f) PC-VOF/isoRDF 

Figure 4.7 – Maximum Velocity Magnitude for the TC1 zero gravity case with tri. Mesh. 

Figure 4.8 displays the pressure jump Δ𝑃 values over time. The 

interFoam (Fig. 4.8-a) solution had a higher error against the theoretical data, 

but presented a rather stable solution as well. The pressure jump prediction 

by the isoAdvector (Fig. 4.8-b) solver was unstable, did not achieve mesh 

convergence and reached significantly lower values when compared to the 

other tested solvers. The isoRDF presented more stable results (Fig. 4.8-c) 

then the original IsoAdvector. All solutions obtained with the PC-VOF method, 

alone (Fig. 4.8-d) or coupled (PC-VOF/isoAdvector in Fig. 4.8-e) and (PC-

VOF/isoRDF in Fig. 4.8-e) are significantly better, in agreement with the 
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theoretical value, proved to be stable throughout the simulation time, and 

showed convergence with mesh refinement.  

  
     (a)   interFoam                                                       (d) PC-VOF 

  
      (b) isoAdvector                                               (e) PC-VOF/isoAdv 

 

          (c) isoRDF                                                  (f) PC-VOF/isoRDF 

Figure 4.8 – Pressure Jump for the TC1 zero gravity case with quad. mesh. 

For the unstructured grids (Fig. 4.9), the results highlighted the lacking 

performance of interFoam (Fig. 4.9-a), isoAdvector (Fig. 4.9-b) and isoRDF 

(Fig. 4.9-c), which prove to be unfit for surface tension driven flows. On the 

other hand, the PC-VOF (Fig. 4.9-d) and coupled methods (Fig. 4.9-e, 4.9-

f) obtained a significantly more stable solution, although the prediction of 

the pressure jump value has deteriorated.  
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     (a) interFoam                                                           (d) PC-VOF 

  

           (b) isoAdvector                                        (e) PC-VOF/isoAdv 

  

               (c) isoRDF                                           (f) PC-VOF/isoRDF 

Figure 4.9 – Maximum Velocity Magnitude for the TC1 zero gravity case with tri. Mesh. 

A useful way to evaluate the solution for pressure is to plot the 

pressure fields in the last time step of the simulations, as depicted in Fig. 

4.10. The pressure field is normalized by the pressure jump across the 

interface Δ𝑃 = 2𝜎/𝑟𝑏0, resulting in 𝑝∗ = 𝑝𝑟𝑏0/2𝜎. The 𝑝∗ field ranges from 0 

in the liquid region to 1 in the gas bubble region. The pressure field of the 

interFoam solver (Fig. 4.10-a) showed a significant amount of ripples in the 

interface region, but overall a rather stable field was achieved. The fields 

obtained by the isoAdvector (Fig. 4.10-b) and isoRDF (Fig. 4.10-c) solvers 

were unstable and presented a large amount of ripples. PC-VOF (Fig. 4.10-
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d) obtained a pressure field with virtually no ripples. The coupled methods 

obtained identical solutions to the pure PC-VOF method. On unstructured 

meshes, the pressure fields generated by interFoam (Fig. 4.11-a), 

isoAdvector (Fig. 4.11-b) and isoRDF (Fig. 4.11-c) were significantly 

unstable, with several pressure spikes in an almost unrecognizable 

cylindrical shape. The PC-VOF based methods obtained pressure fields 

almost identical to the quadrangular meshes. 

        
(a)   interFoam                                                    (d) PC-VOF 

                
(b) isoAdvector                                                (e)  PC-VOF/isoAdv           

              
(c) isoRDF                                                (f) PC-VOF/isoRDF             

Figure  4.10 – Pressure Fields in the bubble region for the TC1 initialization case. 
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(a)   interFoam                                                           (d) PC-VOF 

 

(b) isoAdvector                                                    (e)  PC-VOF/isoAdv           

                            
 (c) isoRDF                                                          (f) PC-VOF/isoRDF        

Figure  4.11 – Pressure Fields in the bubble region for the TC1 initialization case.      

4.3.2 Test Case 1 – Rising Condition 

Following the zero gravity condition case, the rising bubble simulation 
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with the TC1 configuration took place. Hysing et al. (2009) presented 

solutions for the rising bubble tests from three different finite element 

solvers, TP2D, FreeLIFE and MooNMD. The solutions obtained by the 

methods contemplated in this work were compared to these results. 

For the two dimensional TC1 case, the simulation was run for 3𝑠 and 

results for mean rise velocity, center of mass and circularity are laid out 

below for quadrangular and triangular meshes. 

During the bubble ascension in the liquid column, its interface topology 

undergoes a significant amount of deformation, gaining a concave shape in 

its lower region as it widens and loses its circular form (Figs. 4.12 and 4.13).  

 

Figure 4.12 –Time variation of the bubble shape for the TC1 quad. mesh configuration. 

 

Figure 4.13 –Time variation of the bubble shape for the TC1 tri. mesh configuration. 

This pattern is well predicted in all tested methods for quadrangular 

meshes, as shown in Fig. 4.12 for mesh resolution of h = 1/160. For 

triangular grids, the solvers that employ the PC-VOF curvature computation 

managed to accurately predict the bubble shape, however, interFoam, 
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isoAdvector and isoRDF were unable to do so, as shown in figure 4.13 for 

ℎ = 1/160 grid spacing. Figure 4.14 lays out the grid convergence test for 

circularity. The tested methods have all reached convergence with mesh 

refinement, however, the interFoam (Fig. 4.14-a), isoAdvector (Fig. 4.14-b) 

and isoRDF (Fig. 4.14-c) solutions did not agree with benchmark data, 

whereas all models that employed the PC-VOF method, alone or coupled 

(Fig. 4.14-d, 4.14-e and 4.14-f), presented good agreement with the 

benchmark cases.  

  

(a) interFoam                                                        (d) PC-VOF

   

                (b) isoAdvector                                               (e) PC-VOF/isoAdv   

   

                   (c) isoRDF                                                (f) PC-VOF/isoRDF 

Figure 4.14 –Time variation of circularity for the TC1 quadrangular mesh configuration. 

Figure 4.15 below shows the grid test results for triangular meshes. 

The interFoam (Fig. 4.15-a) and isoAdvector (Fig. 4.15-b) solvers did not 
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obtain mesh convergence, and isoRDF’s ℎ = 1/320 solution (Fig. 4.15-c) 

did not converge. The PC-VOF based methods have all followed a similar 

pattern. The coupled methods (Fig. 4.15-e, 4.15-f), in particular, have 

obtained a more accurate solution than the pure PC-VOF method (Fig. 4.15-

d) for coarser mesh resolutions, however, the difference is quite subtle. 

The accurate solutions obtained by the original PC-VOF and the 

coupled methods highlight the importance of curvature computation to the 

interface topology prediction, as opposed to a more enhanced advection 

algorithm, as in the isoAdvector case.  

 .  

(a) interFoam                                                        (d) PC-VOF 

  

    (b) isoAdvector                                             (e) PC-VOF/isoAd 

   

          (c) isoRDF                                               (f) PC-VOF/isoRDF 

Figure 4.15 – Time variation of circularity for the TC1 triangular mesh configuration. 
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The time evolution of the center of mass results for structured meshes 

are displayed in Figure 4.16. All methods obtained good agreement to 

benchmark data, with interFoam, isoAdvector and isoRDF showing minor 

deviations at later time steps (approximately 𝑡 > 1𝑠). An analysis of the 

triangular mesh results (Fig. 4.17) shows that the interFoam, isoAdvector 

and isoRDF did not converge with mesh refinement, and, as previously 

mentioned, the isoRDF ℎ = 1/320 solution did not converge. The PC-VOF 

solvers had virtually identical solutions for quadrangular and triangular 

meshes. 

  

      (a) interFoam                                                        (d) PC-VOF 

  

     (b) isoAdvector                                               (e) PC-VOF/isoAdv 

  

     (c) isoRDF                                            (f) PC-VOF/isoRDF 

Figure 4.16 –Time variation of the center of mass for the TC1 quadrangular mesh 

configuration. 
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   (a) interFoam                                                    (d) PC-VOF              

      

     (b) isoAdvector                                             (e) PC-VOF/isoAdv 

    

             (c) isoRDF                                           (f) PC-VOF/isoRDF 

Figure 4.17 –Time variation of the center of mass for the TC1 triangular mesh 

configuration. 

For the time variation of rise velocity (Fig 4.18) the PC-VOF and the 

PC-VOF/isoAdv obtained identical solutions to the benchmark data. The 

PC-VOF/isoRDF had minor deviations from the benchmark solutions once 

the rise velocity began to stabilize at 𝑉𝑟𝑖𝑠𝑒 > 0.2 𝑚/𝑠.  

The isoAdvector and isoRDF cases were able to predict the slope 

region accurately, and their solutions suffered small deviations at 𝑡 > 0.5. 

Overall, they under predicted the rise velocity by a small account. 
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        (a) interFoam                                                      (c) PC-VOF             

   

                (b) isoAdvector                                                (e) PC-VOF/isoAdv 

   

                   (c) isoRDF                                                   (f) PC-VOF/isoRDF 

Figure 4.18 –Time variation of the mean rise velocity for the TC1 quadrangular mesh 

configuration. 

For the mean rise velocity with triangular meshes (Fig. 4.19), a similar 

pattern to the other quantities in unstructured meshes is observed. The PC-

VOF based methods had good agreement with benchmark data, particularly 

the coupled methods, that presented slightly improved results at later time 

steps than the original PC-VOF method. The isoAdvector, isoRDF and 

interFoam did not converge with mesh refinement. 
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                                    (a) interFoam                                                        (d) PC-VOF 

   

                                  (b) isoAdvector                                                 (e) PC-VOF/isoAdv 

   

                                   (c) isoRDF                                                    (f) PC-VOF/isoRDF 

Figure 4.19 –Time variation of the mean rise velocity for the TC1 triangular mesh 

configuration. 

 

Figure 4.20 shows a comparative grid test amongst all methods, and 

highlights the proximity between the solutions of the PC-VOF and the 

coupled methods. In particular, the circularity results for the coupled 

methods (Fig. 4.20-d and 4.20-e) were more accurate than the pure PC-

VOF method (Fig. 4.20-d). The center of mass results for structured meshes 

show that PC-VOF (Fig. 4.20-d) had the most accurate predictions for 

coarser grids, eventually being surpassed by the PC-VOF/isoAdv coupled 

method. By analyzing the grid tests for triangular grids (Fig. 4.20-a, 4.20-b, 
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4.20-c), one can notice the lack of mesh convergence of the interFoam, 

isoAdvector and isoRDF cases. 

 

        (a) Circularity quad. Mesh.                                       (b) Circularity, tri. Mesh.             

 

     (c) Center of mass quad. Mesh.                          (d) Center of mass, tri. Mesh.             

  

     (e) Rise velocity quad. Mesh.                               (f) Rise velocity, tri. Mesh.             

Figure 4.20 –Grid test comparison. 

Table 4.5 shows the average errors in the prediction of the evaluated 

flow quantities against the three solutions provided in the benchmark data 

for the quadrangular and triangular meshes with ℎ =1/320 spacing. The 

errors for every benchmark solution provided by Hysing et al. (2009) were 

calculated, and an averaging process took place in order to provide a global 

error. Overall, for the quadrilateral mesh, the errors were very low for all 

methods. The coupled method PC-VOF/isoAdv presented the most 

accurate solution, particularly in center of mass prediction with an error of 
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0.09%. The results for the triangular mesh show an increase in the error 

magnitude for the interFoam, isoAdvector and isoRDF cases, and an 

increase in the disparity between those errors and the ones obtained by the 

PC-VOF base methods. The coupled methods achieved almost identical 

results which were superior to the original PC-VOF method. 

Table 4.5 –Errors for benchmark quantities predictions with all methods for 

quadrangular and triangular grids of ℎ = 1/320 spacing. 

 quadrangular grid   triangular grids 

Methods 𝐶   𝑉𝑟𝑖𝑠𝑒    �⃗⃗�𝑐 𝐶  𝑉𝑟𝑖𝑠𝑒    �⃗⃗�𝑐 

InterFoam 1.11% 4.02% 0.59% 6.16% 88.96% 39.81% 

IsoAdvector 1.30% 3.61% 0.97% 5.82% 81.10% 39.81% 

IsoRDF 1.48% 3.82% 0.99% 8.52% 81.10% 49.03% 

PC-VOF 0.19% 0.46% 0.20% 0.13% 1.75% 0.74% 

PC-VOF/isoAdv 0.09% 0.26% 0.20% 0.13% 1.24% 0.65% 

PC -VOF/isoRDF 0.37% 0.57% 0.20% 0.13% 1.24% 0.65% 

 

4.3.3 Test Case 2 – Rising Condition 

Following the TC1 case, the rising bubble simulation with the TC2 

configuration took place. The solutions for the rising bubble tests from the 

three solvers, TP2D, FreeLIFE and MooNMD were contemplated in this 

work for the TC2 as well. 

Unlike the TC1 configuration, the present test case involves a less 

surface tension dominated flow, where inertial and gravitational forces play 

a more significant role. The bubble shape differs from the previous test 

case, since during ascension, the bubble takes a skirted shape and gains a 

more complicated topology. The possibility of bubble breakup is also high, 

given the elongation of the skirt area.  

Given the diminished prominence of surface tension in the test case 2 

configuration, the enhancements in curvature computation were not as 

influential in the overall results for the evaluated quantities. This effect is 

clearly seen in the bubble shape prediction shown in Fig. 4.21. The bubble 

shape of all methods were well in accordance with the benchmark data, both 

for quadrangular and triangular meshes.  
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  (a) quadrangular mesh configuration 

 

        

(b) triangular mesh configuration 

Figure 4.21 – Time evolution of the bubble shape for the TC2  

 

The results for circularity are shown in figure 4.22, where the solution 

of the TP2D solver showed a deviation from the others, as it predicted 

bubble breakup in more advanced time steps of the simulation. The 

interFoam (Fig. 4.22-a) and PC-VOF (Fig. 4.22-d) had similar results and 

were more aligned with the FreeLIFE and MoonMD solutions.  

IsoAdvector (Fig. 4.22-b) and isoRDF (Fig. 4.22-c) also presented 

good agreement to the benchmark data, however, for the ℎ = 1/160 grid, 

they predicted breakup, but at a different time-step from the TP2D solution. 

The PC-VOF coupled methods (Fig. 4.22-e, 4.22-f) had similar results to the 

original PC-VOF, and had a more stable circularity variation at 𝑡 > 2.75𝑠, 

where interFoam and PC-VOF showed oscillations. 



4. Results and Discussion _____________________________________________ 60 
 

 
 

The triangular mesh results (Fig. 4.23) were, again, very similar to the 

structured mesh. The main difference that is worth noting is the prediction 

of breakup by the PC-VOF based methods (Fig. 4.23-d, 4-23-e, 4.23-f)  with 

the ℎ = 1/40 grid that did not occur on structured meshes. The results as a 

whole were close to benchmark data. 

 

  

       (a) interFoam                                                           (d) PC-VOF 

  

     (b) isoAdvector                                             (e) PC-VOF/isoAdv 

  

                   (c) isoRDF                                                   (f) PC-VOF/isoRDF 

Figure 4.22 –Time variation of curvature for the TC2 quadrangular mesh 

configuration. 
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   (a) interFoam                                                           (d) PC-VOF            

  

             (b) isoAdvector                                                (e) PC-VOF/isoAdv 

  

       (c) isoRDF                                                  (f) PC-VOF/isoRDF 

Figure 4.23 –Time variation of curvature for the TC2 triangular mesh configuration. 

The center of mass results (Fig. 4.24) follow the pattern of the other 

quantities. All methods present similar solutions, where a small deviation 

from benchmark data occur at 𝑡 > 1.5𝑠. The PC-VOF based methods (Fig. 

4.24d, 4.24-e, 4.24-f) did not improve the solutions. Results for the triangular 

mesh present the same behavior, and are displayed in Fig. 4.25. 
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                  (a) interFoam                     (b) isoAdvector                                   (c) isoRDF  

   

                   (d) PC-VOF                           (e) PC-VOF/isoAdv                       (f) PC-VOF/isoRDF 

Figure 4.24 – Time variation of the center of mass for the TC2 quadrangular mesh 

configuration. 

    

                  (a) interFoam                          (b) isoAdvector                                 (c) isoRDF  

   

                   (d) PC-VOF                           (e) PC-VOF/isoAdv                     (f) PC-VOF/isoRDF 

Figure 4.25 – Time variation of the center of mass for the TC2 triangular mesh 

configuration. 

Regarding the rise velocity for quadrangular grids (Fig. 4.26), an 

almost identical pattern was observed for all methods. A deviation from 

benchmark data was detected once the slope of the 𝑉𝑟𝑖𝑠𝑒 curve decreased, 

and a smooth oscillating pattern takes place. Although finer meshes were 

able to more accurately predict those oscillations, the results were unable 

to adhere to the benchmark curve, unlike for other quantities. The isoRDF 

based methods (Fig. 4.26-e, 4.26-f) showed an oscillatory behavior at later 

time steps (𝑡 > 2), particularly for the ℎ = 1/160 grid in the coupled method. 
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For the triangular mesh cases (Fig. 4.27), a similar pattern was observed, 

although the PC-VOF based methods had a smoother solution.  

   

                  (a) interFoam                            (b) isoAdvector                                   (c) isoRDF  

    

                   (d) PC-VOF                           (e) PC-VOF/isoAdv                              (f) PC-VOF/isoRDF 

 Figure 4. 26 - Time variation of the mean rise velocity for the TC2 quadrangular 

mesh configuration. 

     

                  (a) interFoam                           (b) isoAdvector                                   (c) isoRDF  

     

                   (d) PC-VOF                           (e) PC-VOF/isoAdv                     (f) PC-VOF/isoRDF 

Figure 4.27 –Time variation of the mean rise velocity for the TC2 triangular mesh 

configuration. 

Figure 4.28 displays a comparative grid test for all methods 

contemplated in the present work. The results shown further validate the 

assertion that the surface tension modelling imposes a minor influence in 

the accuracy of the obtained solutions. In fact, the Test Case 2 simulations 

appear to be more responsive to improvements in the advection methods. 



4. Results and Discussion _____________________________________________ 64 
 

 
 

For circularity  𝐶 in quadrangular meshes (Fig 4.28-a) all methods 

converged to similar results, and had good agreement to the MoonMD and 

FreeLIFE solutions, whereas for the center of mass (Fig 4.28-c) and rise 

velocity (Fig 4.28-e) the results were more closely aligned to the FreeLIFE 

solution. For triangular meshes (Fig. 4.28-b, 4.28-d, 4.28-f) the methods 

based on the isoAdvector and isoRDF schemes held the most accurate 

solutions for center of mass and rise velocity. Both interFoam and PC-VOF 

employ the standard MULES advection algorithm, which is known to be less 

accurate than other algebraic VOF schemes as well as geometric advection 

schemes. The coupled methods also obtained accurate results, which were 

on par with the ones presented by the original isoAdvector and isoRDF. 

 

     
        (a) Circularity quad. Mesh.                                       (b) Circularity, tri. Mesh.             

    
        (c) Center of mass quad. Mesh.                             (d) Center of mass, tri. Mesh.             

    
        (e) Rise velocity quad. Mesh.                               (f) Rise velocity, tri. Mesh.             

Figure 4.28 –Grid test comparison. 
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Table 4.6 displays the errors for the three flow quantities considered 

and all tested methods. Since the solution by TP2D significantly deviated 

from the other codes in circularity 𝐶 prediction, it was not considered in the 

error calculation for 𝐶. The same procedure applied to the error estimation 

of TC1 was done for the TC2 configuration.   

In quadrangular meshes, the most accurate results were once again 

achieved by the couple methods, PC-VOF/isoAdv and PC-VOF/isoRDF. 

However, the disparity was not as high as in the TC1 cases. For triangular 

grids, although the original isoAdvector and isoRDF obtained the most 

precise values for circularity and center of mass �⃗⃗�𝑐, their predictions of rise 

velocity were inferior to the PC-VOF/isoRDF solution by a greater margin.  

 

Table 4.6 –Errors for benchmark quantities predictions with all methods for 

quadrangular and triangular grids of ℎ = 1/320 spacing. 

 quadrangular grid   triangular grids 

Methods 𝐶𝑚𝑖𝑛   𝑉𝑟𝑖𝑠𝑒    �⃗⃗�𝑐 𝐶𝑚𝑖𝑛   𝑉𝑟𝑖𝑠𝑒    �⃗⃗�𝑐 

InterFoam 5.16% 5.65% 0.88% 5.96% 8.19% 2.64% 

IsoAdvector 5.27% 6.02% 1.5% 5.08% 4.94% 0.73% 

IsoRDF 5.24% 5.13% 1.23% 5.01% 5.04% 0.73% 

PC-VOF 5.13% 5.55% 0.73% 5.2% 7.29% 1.85% 

PC-VOF/isoAdv 5.13% 3.48% 0.62% 5.25% 4.75% 1.23% 

PC -VOF/isoRDF 5.16% 3.37% 0.65% 5.16% 3.72% 0.76% 

 

 

 

 

 

 



5. Conclusion 

The present work aimed to evaluate the performance of different 

methods within the VOF framework against test cases with either analytical 

solutions or benchmark data for comparison. The preliminary test case 

results were underwhelming in the sense that the square interface cases 

showed virtually no difference between the tested methods, and the 

oscillating drop showed poor results for the coupled methods. In fact, the 

oscillating drop case requires further investigation as to the reason behind 

the under performance of the coupled methods in relation to the original PC-

VOF. 

The benchmark test case results were very promising. TC1 highlighted 

the importance of the curvature computation in surface tension modelling, 

as the results of PC-VOF based methods were far greater than the ones 

obtained by interFoam, isoAdvector and isoRDF, particularly for the 

triangular meshes. On the other hand, TC2 proved the importance of an 

enhanced advection algorithm, as the results presented by the isoAdvector 

and isoRDF based methods were the most accurate ones. 

The coupled methods excelled in almost every comparison carried out 

in this work, and can be recommended for a wide variety of case 

configurations. The relaxing bubble simulation exposed a major issue with 

the interFoam, isoAdvector and isoRDF related to their pressure fields. 

Coupling these methods with PC-VOF mitigates this issue almost entirely, 

and, therefore, constitute a feasible and more stable alternative to their 

original constituent methods. 

Further investigation into their performance for three-dimensional 

simulations remains to be pursued in order to assert their superior 

capabilities. Many modifications can be performed in order to ensure a more 

optimized solver with a tighter coupling between the methods. 
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